Return to Human Space Flight home page

Wing

The wing is an aerodynamic lifting surface that provides conventional lift and control for the orbiter. The left and right wings consist of the wing glove; the intermediate section, which includes the main landing gear well; the torque box; the forward spar for mounting the reusable reinforced carbon-carbon leading edge structure thermal protection system; the wing/elevon interface; the elevon seal panels; and the elevons.

The wing is constructed of conventional aluminum alloy with a multirib and spar arrangement with skin-stringer-stiffened covers or honeycomb skin covers. Each wing is approximately 60 feet long at the fuselage intersection and has a maximum thickness of 5 feet.

The forward wing box is an extension of the basic wing that aerodynamically blends the wing leading edge into the midfuselage wing glove. The forward wing box is a conventional design of aluminum ribs, aluminum tubes and tubular struts. The upper and lower wing skin panels are stiffened aluminum. The leading edge spar is constructed of corrugated aluminum.

The intermediate wing section consists of the conventional aluminum multiribs and aluminum tubes. The upper and lower skin covers are constructed of aluminum honeycomb. A portion of the lower wing surface skin panel includes the main landing gear door. The intermediate section houses the main landing gear compartment and reacts a portion of the main landing gear loads. A structural rib supports the outboard main landing gear door hinges and the main landing gear trunnion and drag link. The support for the inboard main landing gear trunnion and drag link attachment is provided by the midfuselage. The main landing gear door is conventional aluminum honeycomb.

The four major spars are constructed of corrugated aluminum to minimize thermal loads. The forward spar provides the attachment for the thermal protection system reusable reinforced carbon-carbon leading edge structure. The rear spar provides the attachment interfaces for the elevons, hinged upper seal panels, and associated hydraulic and electrical system components. The upper and lower wing skin panels are stiffened aluminum.

The elevons provide orbiter flight control during atmospheric flight. The two-piece elevons are conventional aluminum multirib and beam construction with aluminum honeycomb skins for compatibility with the acoustic environment and thermal interaction. The elevons are divided into two segments for each wing, and each segment is supported by three hinges. The elevons are attached to the flight control system hydraulic actuators at points along their forward extremities, and all hinge moments are reacted at these points. Each elevon travels 40 degrees up and 25 degrees down.

The transition area on the upper surface between the torque box and the movable elevon consists of a series of hinged panels that provide a closeout of the wing-to-elevon cavity. These panels are of Inconel honeycomb sandwich construction outboard of wing station Y w 312.5 and of titanium honeycomb sandwich construction inboard of wing station Y w 312.5. The upper leading edge of each elevon incorporates titanium rub strips. The rub strips are of titanium honeycomb construction and are not covered with the thermal protection system reusable surface insulation. They provide the sealing surface area for the elevon seal panels.

The exposed areas of the wings, main landing gear doors and elevons are covered with reusable surface insulation thermal protection system materials except for the elevon seal panels.

Thermal seals are provided on the elevon lower cove area along with thermal spring seals on the upper rub panels. Pressure seals and thermal barriers are provided on the main landing gear doors.

The wing is attached to the fuselage with a tension bolt splice along the upper surface. A shear splice along the lower surface in the area of the fuselage carry-through completes attachment interface.

Prior to the manufacturing of the wings for Discovery (OV-103) and Atlantis (OV-104), a weight reduction program resulted in a redesign of certain areas of the wing structure. An assessment of wing air loads was made from actual flight data that indicated greater loads on the wing structure. As a result, to maintain positive margins of safety during ascent, structural modifications were incorporated into certain areas of the wings. The modifications consisted of the addition of doublers and stiffeners.

The wing, elevon and main landing gear door contractor is Grumman Corp., Bethpage, N.Y.


Curator: Kim Dismukes | Responsible NASA Official: John Ira Petty | Updated: 04/07/2002
Web Accessibility and Policy Notices