Return to Human Space Flight home page

Nose Wheel Steering

The orbiter nose wheel is steerable after nose wheel touchdown at landing. The nose wheel is electrohydraulically steerable through the use of the general-purpose computers and the commander's or pilot's rudder pedals, in conjunction with the orbiter flight control system in the control stick steering mode. In addition, the nose wheel may also be steerable through the use of the commander's or pilot's rudder pedals in the direct mode.

Nose wheel steering is advantageous to allow positive lateral directional control of the orbiter during the rollout phase of a mission in the presence of high crosswinds and blown tires. Recent modifications of the nose wheel steering system have been incorporated to allow a safe high-speed engage of the nose wheel steering system.

The first in the series of changes was to redefine the NWS switch on panel L2. The forward position of the switch now activates the direct mode of nose wheel steering, the center position activates the GPC mode of nose wheel steering, and the aft switch off position deactivates all nose wheel steering. A flexible handle extension was also added to the switch handle.

The commander selects and activates the GPC mode while performing the pre-entry checklist of cockpit switches while his eyes and attention are inside the cockpit. No other flight crew action is required in order to engage active nose wheel steering at the time of nose wheel touchdown. Other added features provide assurance that the nose wheel will be positioned straight ahead at the moment of nose wheel touchdown, and the final enable signals in the GPC mode are sequenced at nose wheel touchdown and begin active nose wheel steering at that time.

During derotation and nose wheel touchdown, the flight crew is looking out the windshield and at the head-up display. If the commander chooses to select the direct mode of nose wheel steering or deactivate all nose wheel steering by selecting off without visual verification of the actual switch position, he can sweep his left hand over the switch (forward motion for direct or aft motion for off ) and be certain of the position of the NWS switch without looking at the switch.

Only hydraulic system 1 supplies hydraulic system supply pressure to the nose wheel hydraulic actuator for steering in either the GPC or direct mode. If hydraulic system 1 supply pressure is unavailable, the commander or pilot can apply the left and right main landing brakes by applying toe pressure on the rudder pedals differentially, which allows directional control by differential braking. The nose wheel steering actuator limits the motion of the nose wheel to plus or minus 10 degrees and also prevents nose wheel shimmey.

When the NWS switch is set to either GPC or direct , the nose wheel steering system fault detection logic detects (1) the interruption of hydraulic system 1 supply pressure; (2) an open or short in the nose wheel steering servovalve circuitry; (3) an open or short in the position feedback, rate position error; (4) an open or short in the command transducer; and (5) broken linkage or loss of electrical power. At this time, the NWS fail C/W light on panel F3 is illuminated, and the nose wheel steering reverts automatically to the caster mode.

General-Purpose Computer Mode. The NWS switch on panel L2, positioned to GPC, enables the nose wheel steering solenoid control valves, which supplies hydraulic system 1 pressure to the nose wheel steering servovalves. In addition to the GPC mode selection of the NWS switch, the flight control system roll/yaw CSS push button switch/light indicator on panel F2 or F4 must be depressed to enable GPC mode steering. When either push button switch/light indicator on panel F2 or F4 is depressed, a white light is illuminated within the push button.

When the commander or pilot positions the rudder pedals in the GPC roll/yaw CSS mode, the rudder pedals command position is appropriately scaled within the GPC's software and transmitted to a summing network, along with accelerometer inputs from within the flight control system. The accelerometer inputs are utilized to prevent any sudden lateral deviation of the orbiter's velocity vector direction. From this summing network, a nose wheel steering command is sent to a comparison network as well as to the steering servo system.

The three new steering position transducers in the unit added on the nose wheel strut receive redundant electrical excitation from the new steering position amplifier (added to the middeck ceiling), which receives redundant electrical power from data display unit 2 on the flight deck.

Each of the three new transducers transmits nose wheel position feedback to a redundancy management mid-value-select software, which then transmits a nose wheel position signal to the comparison network. The orbiter nose wheel commanded and actual positions are compared for position error and for rates to reduce any error. Absence of an error condition will enable nose wheel steering after weight on the nose gear is sensed in the software. Weight on the nose gear requires weight on all three landing gear and a nose-down orbiter attitude. The enable signal permits hydraulic system 1 pressure to be applied to the nose wheel steering actuator. If hydraulic pressure is below 1,350 psi, the actuator remains in the shimmy damp mode, and a failure is annunciated to the NWS fail C/W yellow light on panel F3. If hydraulic system 1 pressure is above 1,350 psi, the actuator is configured to the GPC CSS mode to position the nose wheel utilizing the commander's or pilot's rudder pedals.

If more than one of the three new position transducer feedback signals are lost, the comparison logic switches hydraulic system 1 supply pressure off to the nose wheel steering actuator, and pressure sensing immediately inhibits nose wheel steering in the GPC CSS mode automatically. Nose wheel steering will then revert to a nose wheel caster mode and the NWS fail yellow C/W light will be illuminated on panel F3. This redundancy in the GPC CSS mode provides immediate protection against any undesired lateral nose wheel response during nose wheel steering.

If nose wheel steering has failed, the NWS switch on panel L2 positioned to off will extinguish the NWS fail C/W yellow light on panel F3, unless the GPC CSS mode comparison circuits caused the light to be illuminated. When the NWS switch is positioned to off, hydraulic system 1 supply pressure to the nose wheel steering system is removed, allowing the nose wheel to caster.

Direct Mode. When the NWS switch on panel L2 is positioned to direct, the nose wheel steering solenoid control is enabled after weight is sensed on the nose gear. This supplies hydraulic system 1 supply pressure to the nose wheel steering servo system.

When the commander or pilot positions the rudder pedals in the direct mode, the rudder pedals command position is shaped to provide a less sensitive rudder pedal command in the midrange and provides steering commands directly to the nose wheel steering servoactuator, bypassing the GPC software altogether.

The two additional steering position transducer/amplifier boxes are from Honeywell, the NWS box was modified by Sterer, and the DDU 2 modification was made by Collins.

A new additional nose wheel steering system design is expected to be available in late 1988 or early 1989.


Curator: Kim Dismukes | Responsible NASA Official: John Ira Petty | Updated: 04/07/2002
Web Accessibility and Policy Notices